A Sparsity-Based Approach to 3D Binaural Sound Synthesis Using Time-Frequency Array Processing
نویسندگان
چکیده
Localization of sounds in physical space plays a very important role in multiple audio-related disciplines, such as music, telecommunications, and audiovisual productions. Binaural recording is the most commonly used method to provide an immersive sound experience by means of headphone reproduction. However, it requires a very specific recording setup using high-fidelity microphones mounted in a dummy head. In this paper, we present a novel processing framework for binaural sound recording and reproduction that avoids the use of dummy heads, which is specially suitable for immersive teleconferencing applications. The method is based on a time-frequency analysis of the spatial properties of the sound picked up by a simple tetrahedral microphone array, assuming source sparseness. The experiments carried out using simulations and a real-time prototype confirm the validity of the proposed approach.
منابع مشابه
Comparison of modal versus delay-and-sum beamforming in the context of data-based binaural synthesis
Several approaches to data-based binaural synthesis have been published that capture a sound field by means of a spherical microphone array. The captured sound field is typically decomposed into plane waves which are then auralized using head-related transfer functions (HRTFs). The decomposition into plane waves is often based on modal beamforming techniques which represent the captured sound f...
متن کاملA spatialized additive synthesizer
In virtual auditory environments, sound generation is typically based on a two-stage approach: synthesizing a monophonic signal, implicitly equivalent to a point source, and simulating the acoustic space. The directivity, spatial distribution and position of the source can be simulated thanks to signal processing applied to the monophonic sound. A one-stage synthesis/spatialization approach, ta...
متن کاملA Structural Parametric Binaural 3D Sound Implementation Using Open Hardware
Most binaural 3D sound implementations use large databases with pre-recorded transfer functions, which are mostly prohibitive for real time embedded applications. This article focus on a parametric approach proposal, opening space for customizations and to add new processing blocks easily. In this work we show the feasibility of a parametric binaural architecture for dynamic sound localization ...
متن کاملPsychophysical and physiological evidence for fast binaural processing.
The mammalian auditory system is the temporally most precise sensory modality: To localize low-frequency sounds in space, the binaural system can resolve time differences between the ears with microsecond precision. In contrast, the binaural system appears sluggish in tracking changing interaural time differences as they arise from a low-frequency sound source moving along the horizontal plane....
متن کاملMicrophone array signal processing with application in three-dimensional spatial hearing.
Microphone arrays are known to enhance the directionality and signal-to-noise ratio (SNR) over single-channel sensors. This is considered beneficial in many applications such as video-conferencing systems and hearing aids. However, this advantage comes at the price of the sensation of spatial hearing. The spatial cues due to diffractions of the head and torso are lost if the array is not fitted...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010